Advanced testing topics

The request factory

class RequestFactory

The RequestFactory shares the same API as the test client. However, instead of behaving like a browser, the RequestFactory provides a way to generate a request instance that can be used as the first argument to any view. This means you can test a view function the same way as you would test any other function – as a black box, with exactly known inputs, testing for specific outputs.

The API for the RequestFactory is a slightly restricted subset of the test client API:

  • It only has access to the HTTP methods get(), post(), put(), delete(), head() and options().
  • These methods accept all the same arguments except for follows. Since this is just a factory for producing requests, it’s up to you to handle the response.
  • It does not support middleware. Session and authentication attributes must be supplied by the test itself if required for the view to function properly.


The following is a simple unit test using the request factory:

from django.contrib.auth.models import User
from django.test import TestCase, RequestFactory

class SimpleTest(TestCase):
    def setUp(self):
        # Every test needs access to the request factory.
        self.factory = RequestFactory()
        self.user = User.objects.create_user(
            username='jacob', email='jacob@…', password='top_secret')

    def test_details(self):
        # Create an instance of a GET request.
        request = self.factory.get('/customer/details')

        # Recall that middleware are not supported. You can simulate a
        # logged-in user by setting request.user manually.
        request.user = self.user

        # Test my_view() as if it were deployed at /customer/details
        response = my_view(request)
        self.assertEqual(response.status_code, 200)

Tests and multiple databases

Testing master/slave configurations

If you’re testing a multiple database configuration with master/slave replication, this strategy of creating test databases poses a problem. When the test databases are created, there won’t be any replication, and as a result, data created on the master won’t be seen on the slave.

To compensate for this, Django allows you to define that a database is a test mirror. Consider the following (simplified) example database configuration:

    'default': {
        'ENGINE': 'django.db.backends.mysql',
        'NAME': 'myproject',
        'HOST': 'dbmaster',
         # ... plus some other settings
    'slave': {
        'ENGINE': 'django.db.backends.mysql',
        'NAME': 'myproject',
        'HOST': 'dbslave',
        'TEST_MIRROR': 'default'
        # ... plus some other settings

In this setup, we have two database servers: dbmaster, described by the database alias default, and dbslave described by the alias slave. As you might expect, dbslave has been configured by the database administrator as a read slave of dbmaster, so in normal activity, any write to default will appear on slave.

If Django created two independent test databases, this would break any tests that expected replication to occur. However, the slave database has been configured as a test mirror (using the TEST_MIRROR setting), indicating that under testing, slave should be treated as a mirror of default.

When the test environment is configured, a test version of slave will not be created. Instead the connection to slave will be redirected to point at default. As a result, writes to default will appear on slave – but because they are actually the same database, not because there is data replication between the two databases.

Controlling creation order for test databases

By default, Django will assume all databases depend on the default database and therefore always create the default database first. However, no guarantees are made on the creation order of any other databases in your test setup.

If your database configuration requires a specific creation order, you can specify the dependencies that exist using the TEST_DEPENDENCIES setting. Consider the following (simplified) example database configuration:

    'default': {
         # ... db settings
         'TEST_DEPENDENCIES': ['diamonds']
    'diamonds': {
        # ... db settings
         'TEST_DEPENDENCIES': []
    'clubs': {
        # ... db settings
        'TEST_DEPENDENCIES': ['diamonds']
    'spades': {
        # ... db settings
        'TEST_DEPENDENCIES': ['diamonds','hearts']
    'hearts': {
        # ... db settings
        'TEST_DEPENDENCIES': ['diamonds','clubs']

Under this configuration, the diamonds database will be created first, as it is the only database alias without dependencies. The default and clubs alias will be created next (although the order of creation of this pair is not guaranteed); then hearts; and finally spades.

If there are any circular dependencies in the TEST_DEPENDENCIES definition, an ImproperlyConfigured exception will be raised.

Advanced features of TransactionTestCase

Добавлено в Django 1.6.


This attribute is a private API. It may be changed or removed without a deprecation period in the future, for instance to accommodate changes in application loading.

It’s used to optimize Django’s own test suite, which contains hundreds of models but no relations between models in different applications.

By default, available_apps is set to None. After each test, Django calls flush to reset the database state. This empties all tables and emits the post_migrate signal, which re-creates one content type and three permissions for each model. This operation gets expensive proportionally to the number of models.

Setting available_apps to a list of applications instructs Django to behave as if only the models from these applications were available. The behavior of TransactionTestCase changes as follows:

  • post_migrate is fired before each test to create the content types and permissions for each model in available apps, in case they’re missing.
  • After each test, Django empties only tables corresponding to models in available apps. However, at the database level, truncation may cascade to related models in unavailable apps. Furthermore post_migrate isn’t fired; it will be fired by the next TransactionTestCase, after the correct set of applications is selected.

Since the database isn’t fully flushed, if a test creates instances of models not included in available_apps, they will leak and they may cause unrelated tests to fail. Be careful with tests that use sessions; the default session engine stores them in the database.

Since post_migrate isn’t emitted after flushing the database, its state after a TransactionTestCase isn’t the same as after a TestCase: it’s missing the rows created by listeners to post_migrate. Considering the order in which tests are executed, this isn’t an issue, provided either all TransactionTestCase in a given test suite declare available_apps, or none of them.

available_apps is mandatory in Django’s own test suite.


Setting reset_sequences = True on a TransactionTestCase will make sure sequences are always reset before the test run:

class TestsThatDependsOnPrimaryKeySequences(TransactionTestCase):
    reset_sequences = True

    def test_animal_pk(self):
        lion = Animal.objects.create(name="lion", sound="roar")
        # is guaranteed to always be 1
        self.assertEqual(, 1)

Unless you are explicitly testing primary keys sequence numbers, it is recommended that you do not hard code primary key values in tests.

Using reset_sequences = True will slow down the test, since the primary key reset is an relatively expensive database operation.

Running tests outside the test runner

If you want to run tests outside of ./ test – for example, from a shell prompt – you will need to set up the test environment first. Django provides a convenience method to do this:

>>> from django.test.utils import setup_test_environment
>>> setup_test_environment()

setup_test_environment() puts several Django features into modes that allow for repeatable testing, but does not create the test databases; django.test.runner.DiscoverRunner.setup_databases() takes care of that.

The call to setup_test_environment() is made automatically as part of the setup of ./ test. You only need to manually invoke this method if you’re not using running your tests via Django’s test runner.

Изменено в Django 1.7.

If you are not using a management command to invoke the tests, you will also need to first setup Django itself using django.setup().

Using different testing frameworks

Clearly, unittest is not the only Python testing framework. While Django doesn’t provide explicit support for alternative frameworks, it does provide a way to invoke tests constructed for an alternative framework as if they were normal Django tests.

When you run ./ test, Django looks at the TEST_RUNNER setting to determine what to do. By default, TEST_RUNNER points to 'django.test.runner.DiscoverRunner'. This class defines the default Django testing behavior. This behavior involves:

  1. Performing global pre-test setup.
  2. Looking for tests in any file below the current directory whose name matches the pattern test*.py.
  3. Creating the test databases.
  4. Running migrate to install models and initial data into the test databases.
  5. Running the tests that were found.
  6. Destroying the test databases.
  7. Performing global post-test teardown.

If you define your own test runner class and point TEST_RUNNER at that class, Django will execute your test runner whenever you run ./ test. In this way, it is possible to use any test framework that can be executed from Python code, or to modify the Django test execution process to satisfy whatever testing requirements you may have.

Defining a test runner

Добавлено в Django 1.6.

A test runner is a class defining a run_tests() method. Django ships with a DiscoverRunner class that defines the default Django testing behavior. This class defines the run_tests() entry point, plus a selection of other methods that are used to by run_tests() to set up, execute and tear down the test suite.

class DiscoverRunner(pattern='test*.py', top_level=None, verbosity=1, interactive=True, failfast=True, **kwargs)

DiscoverRunner will search for tests in any file matching pattern.

top_level can be used to specify the directory containing your top-level Python modules. Usually Django can figure this out automatically, so it’s not necessary to specify this option. If specified, it should generally be the directory containing your file.

verbosity determines the amount of notification and debug information that will be printed to the console; 0 is no output, 1 is normal output, and 2 is verbose output.

If interactive is True, the test suite has permission to ask the user for instructions when the test suite is executed. An example of this behavior would be asking for permission to delete an existing test database. If interactive is False, the test suite must be able to run without any manual intervention.

If failfast is True, the test suite will stop running after the first test failure is detected.

Django may, from time to time, extend the capabilities of the test runner by adding new arguments. The **kwargs declaration allows for this expansion. If you subclass DiscoverRunner or write your own test runner, ensure it accepts **kwargs.

Your test runner may also define additional command-line options. If you add an option_list attribute to a subclassed test runner, those options will be added to the list of command-line options that the test command can use.


Добавлено в Django 1.7.

The class used to build the test suite. By default it is set to unittest.TestSuite. This can be overridden if you wish to implement different logic for collecting tests.

Добавлено в Django 1.7.

This is the class of the low-level test runner which is used to execute the individual tests and format the results. By default it is set to unittest.TextTestRunner. Despite the unfortunate similarity in naming conventions, this is not the same type of class as DiscoverRunner, which covers a broader set of responsibilities. You can override this attribute to modify the way tests are run and reported.


This is the class that loads tests, whether from TestCases or modules or otherwise and bundles them into test suites for the runner to execute. By default it is set to unittest.defaultTestLoader. You can override this attribute if your tests are going to be loaded in unusual ways.


This is the tuple of optparse options which will be fed into the management command’s OptionParser for parsing arguments. See the documentation for Python’s optparse module for more details.


DiscoverRunner.run_tests(test_labels, extra_tests=None, **kwargs)

Run the test suite.

test_labels allows you to specify which tests to run and supports several formats (see DiscoverRunner.build_suite() for a list of supported formats).

extra_tests is a list of extra TestCase instances to add to the suite that is executed by the test runner. These extra tests are run in addition to those discovered in the modules listed in test_labels.

This method should return the number of tests that failed.


Sets up the test environment by calling setup_test_environment() and setting DEBUG to False.

DiscoverRunner.build_suite(test_labels, extra_tests=None, **kwargs)

Constructs a test suite that matches the test labels provided.

test_labels is a list of strings describing the tests to be run. A test label can take one of four forms:

  • – Run a single test method in a test case.
  • – Run all the test methods in a test case.
  • – Search for and run all tests in the named Python package or module.
  • path/to/directory – Search for and run all tests below the named directory.

If test_labels has a value of None, the test runner will search for tests in all files below the current directory whose names match its pattern (see above).

extra_tests is a list of extra TestCase instances to add to the suite that is executed by the test runner. These extra tests are run in addition to those discovered in the modules listed in test_labels.

Returns a TestSuite instance ready to be run.


Creates the test databases.

Returns a data structure that provides enough detail to undo the changes that have been made. This data will be provided to the teardown_databases() function at the conclusion of testing.

DiscoverRunner.run_suite(suite, **kwargs)

Runs the test suite.

Returns the result produced by the running the test suite.

DiscoverRunner.teardown_databases(old_config, **kwargs)

Destroys the test databases, restoring pre-test conditions.

old_config is a data structure defining the changes in the database configuration that need to be reversed. It is the return value of the setup_databases() method.


Restores the pre-test environment.

DiscoverRunner.suite_result(suite, result, **kwargs)

Computes and returns a return code based on a test suite, and the result from that test suite.

Testing utilities


To assist in the creation of your own test runner, Django provides a number of utility methods in the django.test.utils module.


Performs any global pre-test setup, such as the installing the instrumentation of the template rendering system and setting up the dummy email outbox.


Performs any global post-test teardown, such as removing the black magic hooks into the template system and restoring normal email services.


The creation module of the database backend also provides some utilities that can be useful during testing.

create_test_db([verbosity=1, autoclobber=False, serialize=True])

Creates a new test database and runs migrate against it.

verbosity has the same behavior as in run_tests().

autoclobber describes the behavior that will occur if a database with the same name as the test database is discovered:

  • If autoclobber is False, the user will be asked to approve destroying the existing database. sys.exit is called if the user does not approve.
  • If autoclobber is True, the database will be destroyed without consulting the user.

serialize determines if Django serializes the database into an in-memory JSON string before running tests (used to restore the database state between tests if you don’t have transactions). You can set this to False to significantly speed up creation time if you know you don’t need data persistence outside of test fixtures.

Returns the name of the test database that it created.

create_test_db() has the side effect of modifying the value of NAME in DATABASES to match the name of the test database.

Изменено в Django 1.7:

The serialize argument was added.

destroy_test_db(old_database_name[, verbosity=1])

Destroys the database whose name is the value of NAME in DATABASES, and sets NAME to the value of old_database_name.

The verbosity argument has the same behavior as for DiscoverRunner.

Integration with

Code coverage describes how much source code has been tested. It shows which parts of your code are being exercised by tests and which are not. It’s an important part of testing applications, so it’s strongly recommended to check the coverage of your tests.

Django can be easily integrated with, a tool for measuring code coverage of Python programs. First, install Next, run the following from your project folder containing

coverage run --source='.' test myapp

This runs your tests and collects coverage data of the executed files in your project. You can see a report of this data by typing following command:

coverage report

Note that some Django code was executed while running tests, but it is not listed here because of the source flag passed to the previous command.

For more options like annotated HTML listings detailing missed lines, see the docs.